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I. BScience Rationale

The Voyager Plasmez Science Experiment (PLS) is designed to measure the
properties of interplanetary and magnetospheric plasmas with energies per
charge between 10V and 5950V, for both electrons and positive ions (Bridge et
al., 1977). The analysis and data described herein peftain to the mag-
netospheric measurements obtained during the Jupiter encounters of Voyager 1
and Voyager 2. Previous to the Voyager encounters, little was known about the
properties of the low-energy plasma in the Jovian magnetosphere, and the data
gathered by PLS represent a significant advance in our knowledge of the Jovian
magnetosphere. Publications growing out of this data set are listed in the
bibliography. Some of the major results of the investigation were: (1)
measurements of positive-ion properties in the Io plasma torus and inner %o
middle magnetosphere of Jupiter (i.e., densities, temperatures, composition,
with some velocity information); (2) measurements of magnetospheric electron
properties from the Io plasma torus to the outer magnetosphere; (3) discovery
of the breakdown of rigid corotation in the middle magnetosphere; and (k)
direct measurements of the velocity perturbations associated with the Alfv;n
wave generated by Io. A comprehensive review of the PLS results at Jupiter is
given in Belcher (1982}, and the naive user should start with this article

(copies are available upon request from MIT).

II. Instrument Description

The Plasma Science Experiment is well-described in the literature (Bridge
et al., 1977), and we give only a brief description here. The Plasma Science
experiment consists of four modulated-grid Faraday cups, three of which (A, B,

C) are symmetrically positioned about an axis that generally points toward the




Earth, and a fourth (the side sensor, D) oriented at right angles to this
direction. Positive-ion measurements are made in all four sensors, and
electron measurements in the D sensor alone. We first discuss the positive
ion measurements.

A. Positive-Ion Measurements

Each of the four PLS sensors provides an energy-per-charge scan of the
positive-ion plasma between 10 and 5950V. The scan in velocity space is
integral in the directions perpendicular to the sensor normal and differential
in the direction in velocity space along the sensor normal. Thus the four
energy-per-charge scans provide reduced one-dimensional ion distribution
functions for four different directions in velocity space, convolved with the
response functions of the sensors (see Appendix A of McNutt, Belcher, and
Bridge, 1981).

Figure 1 shows the Voyager trajectory projected onto the Jovian equa-
torial plane. Also shown is the projection of the symmetry axis of the main
sensor cluster (S), which consists of the A, B, and C cups. The projéc- tion
of the normal of the side-looking sensor, the D cup, is also indicated (D).
The prime field of view of the main cluster is roughly a cone of half-angle
45° about the symmetry axis, and the field of view of the side sensor is a
cone of half-angle 30° about the cup normal. It is apparent from this figure
that plasma corotating with Jupiter will flow into the D sensor over most of
the inbound leg of the trajectory. Cold corotating flow moves out of the D
sensor and into the field of view of the main cluster near closest approach,
and out of the field of view of all sensors on the outbound leg. Thus, on
Voyager 1, positive-ion data are obtained primarily from inbound observations;
in the torus proper, the data come from the three Faraday cups in the main

cluster, whereas in the middle magnetosphere {outside of 10 RJ), they are
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obtained primarily from the side sensor. The positive ilons are generally
transonic to highly supersonic. Because of the unfavorable look directions,
positive-ion data outbound are thus of much poorer quality than inbound.
During the Voyager 2 encounter, the viewing geometry was similar to that of
Voyager 1, but the closest approach distance of 10 RJ precluded observations
in the torus.

There are two positive-ion measurement modes: a low resolution energy-
per-charge mode {the "L" mode), with 16 energy channels between 10V and 5950V,
and a high resolution energy-per-charge mode (the"M" mode), with 128 steps
between 10V and 5950V. In general, the L mode is most useful in the outer and
middle magnetosphere because of its high signal-to-noise ratic, whereas the M
mode is crucial for composition studies in the middle and inner magnetosphere.
Figure 2 shows an M mode measurement in the D sensor in the middle magneto-

sphere, exhibiting some of the heavy ion peaks characteristic of of the Jovian

2+ S3+ 24+

plasma (H+, o=, s 0" or S . Na+, 5* (not shown in this figure)). 1In the
analysis results described below, we use the terms "moments" and "fits". A
moment analysis does not assume a particular form for the positive- ion
distribution function, or a composition, but instead is a simple sum over the
observed distribution function. For example, the area under the curve in
Figure 2 is a measure of the total positive-ion charge density, and is
straightforward to compute in either the L or M mode. In the Description of
Analysis Records, Section III, the term "moment density" refers to such simple
sums. On the other hand, we can also fit each of the peaks in Figure 2 to a
Maxwellian, and thus arrive at parameters describing the density, temperature,
etc., of each of the heavy ion components. Such parameters are referred to as

"fit" parameters. In general, a moments analysis can always be done, whereas

a fit analysis requires that the plasma be cold in some sense. Thus the fit
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analyses are much more sparse than the moment analyses (see the discussion in
McNutt et al. {1981)).

R. Electron Measurements

In some respects (e.g., spacecraft charging effects), the electron
analysis is much more complex (Scudder et al., 1981) than the positive-ion
analysis. In other respects it is less complex (i.e., there is only one
species of electron, and the electrons are always highly subsonic). There are
two modes for electron measurements: the low energy electron moc: (E1), with
16 energy steps between 10V and 140V, and the high energy electron mode (E2)
vwith 16 energy steps between 10V and 5950V. In the electron analysis, the two
electron modes (El and E2) are combined to arrive at a complete electron
energy spectrum. Such spectra are shown in Figure 3. In general, these
spectra exhibit a cold Maxwellian "core" component and a hot suprathermal
"halo" component. In the electron analysis, as in the ion analysis, there is
a "moment" analysis and a "fit" analysis, with the same meaning. The "fit" is
to two Maxwellians, one hot and one cold.

C. Mode Timing

The integration time for a given energy channel is 240 milli-seconds.
Thus it takes 30.72 seconds to take a full M mode (128 steps), and 3.84
seconds each to take an El, E2, and L mode (16 steps). The spectra are taken
in the sequence M, El, L, E2. Times associated with a given mode are
beginning times of the mode. An entire M, El, L, E2 sequence takes 96 seconds

to complete., However, a complete M mode is not telemetered every 25 seconds.

We send the first T2 channels of the 128 steps from one 96-second sequence,
and then the last 72 channels from the next 96-second sequence. Thus, it
takes 192 seconds to get a complete M mode. In the M-mode analysis, two

each 96 seconds the data are "updated" with the latest 72 channels measured.
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IiI. Description of the Analysis Records

There are seven different types of records on the Plasma Science Analysis

Tapes. Each type is read by an identical statement, i.e.,

DIMENSION JTIME(6), A(30)

READ(10) JTIME,JMOD,JCAT,JGEN,A
The array JTIME always contains (year, day, hour, minute, sec, millisec) in
I*L, Time always increases or stays the same (if we are analyzing the same
spectrum two different ways, for example). The I*4 variable JMOD identifies
the data mode (JMOD=1, 2, 3 refers to L-mode data, M-mode data, and electron
mode data, respectively). The I*4 variable JCAT refers to the type of
analysis on that data, and JGEN is a generation date (month day year in one
I*4 variable}. The matrix A (REAL*4) contains the results of the analysis.
Exactly what is contained in A will depend on the mode and type of analysis,
as we describe below for each of the seven types of records. In general, the
positive-ion moment analysis is in a different type of record than the fit
analysis (values of JCAT differ). For the electrons, however, the fit and
moment analysis are contained in the same type of record. All fill values are
ZTFFFFFFF.

A. L-Mode Positive-Ion Charge Densities, Moment {JMOD=1,JCAT=1).

These types of records are moment analyses (JCAT=1) of L-mode data
{IJMOD=1). They also contain some trajectory and magnetic field data. The
purpose of the moment analysis is to provide an estimate of the positive-ion
charge density, H+, in elementary charges per cubic centimeter, and of the
positive ion mass density, Nm, in amu per cubic centimeter. The estimates of
N+ are reliable, subject to the caveats below. The estimates of Nm’ on the

other hand, are unreliable for a variety of reasons, and should be ignored.




11

The moment charge density N+ is computed as follows. Let Vn be the ccmponent
of plasma velocity into a given sensor. Assume that there are M positive-ion

species, each with density N., mass number Ai and charge number Zi’ i-=

i’

1,2,...M. Let I, be the current in the j-th channel of a positive-ion mode

J

(L or M) and Ae the effective area of the cup. Then as shown in Appendix A

f'f
of McNutt et al. (1981), a good estimate of N, for a cold beam is

N, = LZN, = XJIJ/(eAefan)
Provided that we have an estimate of Vn from other sources, we can estimate
N+, even though individual ion peaks are not resolved.
The definition of the elements of the answer array are as follows:
A(1): radial distance of the s/c from Jupiter, in Jovian radii
(1 Ry = 71,372 km), at the beginning time of the mode.
A{2): System III latitude of the s/c, degrees
A(3): System III longitude of the s/c, degrees
A(4): Cup number from which moment density derived (1,2,3,4 is
A,B,C,D cup). This is 4 in the middle magnetosphere,
switching to 1,2, or 3 near closest approéch. For analysis,
we chose that cup which has maximum response to a cold
corotating beam.
A(S): Response r of the chosen cup tc a cold corotating cold beam
(0. Ej r ;{ 1., and r is 1. at normal incidence).
A(6): Compoﬁént of properly aberrated rigid corotation velocity
into the chosen cup, in km/sec.

A(7): Estimate of N, from equation (1), using rigid corotation for

an estimate of V_ {from A(6)), with Bypp = 64.8 cn® for the




A(10):

A(11):

A(12):

A(13):

A(1L):

A(15):

A{16):
A(17):

A(18):

12

main cluster (l/e.ﬂxef.f = 9.633 x lOml+ for I; in femtoamps and

. _ 2 .
Vn in km/sec) and Agps = 68 cm™ for the side sensor (l/eAeff

h)_

ff
= 9,179 x 10~

Estimate of Nm = EAiNi, not reliable.

Estimate of solar wind or magnetosheath proton density from A
cup of main sensor, computed using standard solar wind scheme
{Bridge et al., 1977). Not useful in the magnetosphere.

Gain state of the instrument (not useful to the general user)
Capacitor state (not useful)

Conversion factor from digital numbers to femtoamps (not
useful).

Cylindrical radial component of magnetic field at the time of
peak current in this positive-ion spectrum.

Cylindrical azimuthal component of magnetic field.
Cylindrical z component of'magnetic field, where z-axis is
parallel to Jovian rotation axis.

Fill (Z7FFFFFFF)

Number of current channels used in computing density in sum
of equation (1).

+ A(30): Fill (Z7FFFFFFF)

Caveats on Use: The estimates of N+ are subject to the general

systematic errors enumerated in Mclutt et al. (1981), page 8324). In par-

ticular, in the outer magnetosphere, the hot suprathermal electrons cause an

electron feed-through into the positive ion measurements, contaminating

estimates of N+ in that region. An estimate of the amount of contamination

can be obtained from the electron records (see III G, below).

In addition, we note that the estimate of N_ in A{T) in this type of
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record differs from the published curves in Figure 6 and 7 of MclNutt et al.
(1981), as follows. On this tape, we have assumed V  is rigid corotation
everyvhere, whereas McNutt et al. (1961) assume V 1is rigid corotation inside
of 17.5 RJ, and 200 km/sec into the D sensor outside of 17.5 R; (see p. 8323).
The values of McNutt et al. (1981) can easily be obtained from the present |
values by multiplying A(7) by A(6)/200 outside of 1T.5 R; inbound. L-mode
estimates of N+ should not be used inside of 15 RJ, if they are smaller than
M-mode estimates inside of 15 RJ, as the L-mode saturates near closest
approach. Instead, the M-mode estimates should be used (see below}. However,
L-mode estimates should always be used in preference to M-mode estimates
outside of 15 RJ, because of signal-to-noise problems in the M-mode. Since
the publication of the McNutt et al. (1981) paper, a better value of A .. for
the side (main} sensors hag been determined to be 56.2 (67.h4) cmeo Thus the
moment densities on this tape should be multiplied by a factor of 1.21 (1.04)
for estimates derived from the side (main) sensors.

Finally, we note that the field data here are to be regarded as
diagnostic only, in that they were derived from early versions of the field
analysis. The definitive source of field data is theVSummary tapes submitted
to NSSDC by the magnetometer team.

B. M-mode Positive-Ion Charge Densities, Moment (JMOD=2, JCAT=1)

These estimates of N, are calculated exactly as above, using the high
resolution M-mode instead of the low resolution L-mode. The answer array A
has the same meaning as above. Again, note that M-mode densities are subject
to higher signal-to-noise outside of 15 RJ, and the L-mode is preferable.
Ingide 15 RJ, the L-mode sometimes saturates, and the M-mode estimate is

preferable.
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C. Selected Middle Magnetosphere L-mode Fits, MeNutt (JMOD=1,JCAT=2)

As discussed in detail in McHNutt et al. {1981, p. 8325), L-mode fits are
possible when the H+ peak is well resolved from the heavy ion peak. For these
resolved L-mode spectra, McNutt et al. (1981) fit H+, 83+, and O+, with S3+
and O+ constrained to have the same temperature, and H+ an independent
temperature. All species are assumed to be comoving. This record type
contains information on these fits, with information in the answer array
defined as follows, for the I-th positive-ion species (I=1,2,3).

IA =8 * (I-1)

A(1 + IA): fit density of the I-th species, number/cc

A{2 + IA): uncertainty in density, fraction

A(3) + IA): fit velocity component into the D-sensor (same for all

species), in km/sec

A(k  + IA): uncertainty in velocity component, fraction

A(5 + IA): fit thermal speed for the I-th species, in km/sec

A{6 + IA): uncertaihty in thermal speed, fracticn

A(T + IA): mass number for I-th species

A(8 + IA): charge number for I-th species

A(25): loglo of the x2 of the fit
A(26): Alfv;n velocity, km/sec
A(27): mass density, amu/cc
A(28): guess for proton density based on three channels, number/cc
A(29): guess for proton velocity component, km/sec
A(30): guess for proton thermal speed, km/sec
The last three elements of the answer array above are estimates of proton

parameters based on the proton peak and two adjacent channels, and are used as
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a starting point for the non-linear least squares fit. DNote that this is a
simultaneous fit to the proton and heavy ion peaks.

Caveats on Use: In the L-mode, the fits are considered '"bad" if the Mach

number of the protons {A(3)/A(5)) is less than 1.16, or if the fractional

error in velocity isgreater than 0.2, or if the Mach number of the S3+ is less
than 1.0, The density estimates here are low for the reasons discussed in III
A above, and should be multiplied by 1.21, as these fits are all derived from

D-sensor data.

D. Selected Middle Magnetosphere M-mode Fits, McNutt (JMOD=2, JCAT=2)

McNutt et al. {1981) selected 60 "high-quality™ M-mode spectra which
were cold enough so that three heavy ion peaks were well-resolved. These
spectra were fit assuming that the three heavy ion peaks were 02+, S3+, and
o' No proton parameters appear in these fits. Each of the three has
independent density and thermal speed; all three species are assumed to have a
common velocity. The answer array is as defined in III C above, except that

A(28 + 30) is fill (no proton parameters)

Caveats in Use: 1In the M-mode, the fits are considered "pad" if the

fractional error in velocity is greater than 0.2, or if the Mach number of the
L

83 is less than 1.0. The density estimates here are again low as in IIl A

above, and should be multiplied by 1.21 (all D-sensor data).

E. Continuous Middle Magnetosphere M-mode Fits, McNutt (JMOD=2, JCAT=5)

For a brief period of time on Voyager 1 {March 4, 1700 to March 5, 0500),
McNutt has run fits to all M-mode, Dwsensor spectra, whether or not resoclved
heavy-ion peaks are present. The fits are as in III D above, with the same

meaning for the answer array.

Caveats in Use: Velocity components into the D-senscor are suspect

because of the lack of resolved peaks. These fits should be taken as

qualitative only.
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F. Io Torus M-mode Fits, Bagenal (JMOD=2,JCAT=3 and 4)

A1l fits discussed above have been to the D-sensor. In the inner
magnetosphere, corotating flow is into the main sensor, and Bagenal and
Sullivan (1981) have performed a number of fits of various positive-ion
species to data taken mostly from the main sensor clusters. This type of
record contains an early version of those fits, running from March 5, 0150, to
March 5, 1208.. The first 10 of the fits are to D-sensor data, with the
remainder to C sensor data. The fits are always to five positive-ion species.

3* ¢?*, 0%, and s*, then 83, 5%%, 07,

2 g3 ¢ 0%, and

Initially, the five species are H+, S

+ 2+’ 53+, S2+ +

s*, and 80,%, then 0 , 8%, 50,", and finally O
S+. Most of these fits assume equal thermal speeds for the species, although
initially some assume equal temperatures. All assume equal velocities into
the sensor, and the velocity component into the sensor is not a fit parameter.
The velocity is taken to be either the rigid corotation value, or scme fixed

fraction thereof. The A array is defined as follows:

A1) cup number from which data taken

A(2): number of positive-ion species fit (always 5)
A(3): undefined flag |

A(L): undefined flag

A(5 * 9): mass numbers of the five species

A{10+14): charge numbers of the five species

A{(15+19): fit number densities of the five species

A(20+24): fit thermal speeds of the five species

A(25+29): velocity component into the sensor of the five species (all
the same, not a fit parameter)

A(30): £111
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Caveats on Use: These fits are an early version of the final fits

published by Bagenal and Sullivan (1981). They should provide good estimates
of the total charge and mass densities in the torus, and qualitative estimates
of temperatures. Relative composition should be disregarded, as these are not
the final "best" fits (see Bagenal and Sullivan, 1981). Note that the seconds
and minutes on the time array for this record type have been artificially set
to zero. However, there will always be an adjacent (JMOD=2, JCAT=1) record on
the tape, and this has the full time array.

G. Electron Moment and Fit Parameters (JMOD=3, JCAT=1)

These type of records give both moment and fit parameters for the
electron spectra. Bach record is an analysis of a composite spectrum using an
El and an adjacent E2 spectrum. The time associated with the record is the

time of the El spectrum. The answer array is defined as follows:

a(1): core fit density, #/cc

A(2): core fit temperature, ev

A(3): X% for core fit

All): halo fit density, #/cc

A(5): halo fit temperature, eV

A(6): X° for halo fit

A(T): s/c potential from fit

A(8): total fit density (sum of 1 and 4)

A(9): totai fit temperature (density weighted average of 2 and 5)

A(10): moment density, #/cc (integration over observed distribution
function)

A(11): moment temperature, eV (second moment of observed distribution
function)

A(12): s/c potential from fits
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A(13): angle between D-cup normal and magnetic field direction

A(1L): angle between D—cup normal and s/c sun line

A(15): £i11

A(16): estimate of total electron feed-through current (into positive

ion mode) in main sensor due to fit electrons (halo + core),
femtoamps
A(LT); average energy of electron feed-through spectrum in main
sensor, eV
A(18): inverse of the average of 1l/energy of electron feed-through
spectrum, in main sensor, eV.
A(19+21): same as 16 + 18, except for side sensor
A(22+24k): same as 16 + 18, main sensor, except using moment density and
temperature taken as a single Maxwellian to compute feed
through (a bad approximation, useful for an upper limit
estimate)
A(25+27): same as 22 +24, except for side sensor
A(28): ratio of core to halo feed-through current, side sensor
A(29): £111
A(30):  £ill
The electron feed-through contamination of the positive-ion estimate
of N, (see III A) can be estimated by taking the total feed-through current,

i

multiplying by 9.633x10'h(9.179x10“ ) for the main {side) sensor, and dividing
by V. in km/sec (see equation 1 and the discussion in IIT A). This feed-
~through density then may be compared to the moment densities on this tape.

Caveats on Use: In addition to electron feed-through into the

positive~ion mode, there is also the possibility of positive-ion feed-through

into the electron modes. This will especially affect the suprathermal
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electrons when their density is less than Ml% of the core electrons. Since
the importance of the suprathermals decreases with decreasing distance from
the planet (Scudder et al. 1981), the suprathermals are therefore most
strongly contaminated in the inner magnetosphere, especially in the Io torus
ingide of L * 8. This effect is stronger inbound than outbound, because
outbound the positive-ion flow is from the back of the D-sensor. Dr. Sittler
at GBFC is currently rising the suprathermal analysis in the torus to
eliminate this contamination, and any use of the current suprathermal analysis
in the inner magnetosphere is discouraged pending his re-analysis. Outside of
L = 8, the suprathermal analysis is relatively unaffected by such feed-
through. However, the suprathermsl spectrum is almost never well-represented
by a hot Maxwellian, and the present fits are under-estimates of the true
suprathermal temperatures and densities when feed-through is unimportant.

Finally, in the Io torus itself {inside of L = 8), the electron densities
are systematically low by factors of order ten, because the spacecraft becomes
negatively charged at high densities. The return current relationship used
elsewhere in the magnetosphere is no longer valid, and as a result, the
density estimates are low (see Scudder et al., 1981l). There is also the
possibility of a very cold electron component well below the PLS 10V
threshold. Dr. Sittler at GSFC is currently working on improved temperature
and density estimates in the torus.

IV. Description of the Tape

This is an IBM generated nine track binary tape. The Data Definition is:
DD UNIT=T1600,DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=19069,DEN=}4),
LABEL=(1,BLP}
=(2,BLP)
The Voyager 1 data are in the first file, and the Voyager 2 data are in the

second file.
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